
Adaptive Tuning in a Dynamically Changing Resource Environment

Seyong Lee and Rudolf Eigenmann∗

School of ECE, Purdue University
West Lafayette, IN, 47907

{lee222,eigenman}@purdue.edu

Abstract

We present preliminary results of a project to create a
tuning system that adaptively optimizes programs to the un-
derlying execution platform. We will show initial results
from two related efforts. (i) Our tuning system can ef-
ficiently select the best combination of compiler options,
when translating programs to a target system. (ii) By tuning
irregular applications that operate on sparse matrices, our
system is able to achieve substantial performance improve-
ments on cluster platforms.

This project is part of a larger effort that aims at creating
a global information sharing system, where resources, such
as software applications, computer platforms, and informa-
tion can be shared, discovered, and adapted to local needs.

1 Opportunities of Today’s Computing Envi-
ronment

1.1 Global Resource Sharing

Modern computing and information systems have pro-
gressed far beyond the single-workstation environment that
contains all resources accessible to the user. Today, it is pos-
sible to find data, programs, and compute resources from
across the world. Many of these resources can be accessed,
used, and included into a new piece of work as if they
resided locally. Owners interested in sharing such resources
can announce their availability to the world with little effort.

The effort that some of these publish, discovery, and use
actions take can be small, so that one may no longer be
aware of the sophisticated, underlying mechanisms. For ex-
ample, we have become accustomed to using Google – a
thousand miles away – to search for information that may
already lay on top of our desk. However, in other situations,

∗This work is supported in part by the National Science Foundation
under grant CNS-0720471

using remote resources can be tedious, because the way they
are published and accessed is not agreed upon, their perfor-
mance and availability fluctuate, or security concerns im-
pose constraints.

The work described in this paper ultimately aims at in-
creasing this ease of use, thus exploiting the opportunities
of today’s computing environments to a higher degree. We
envision that any resource – program, computer system,
and data – can be published by its owner in a way that is
as easy as writing a web page. Resources need not sat-
isfy constraints to become eligible for publication; instead,
the owner can advertise their features. Others can discover
these resources with common tools and mechanisms. Simi-
lar to today’s web search facilities, such discoveries search
in open space, without the need to enter proprietary or con-
strained directories and brokers.

1.2 Adapting Discovered Resources to Lo-
cal Needs

The flexibility of publication and the openness of search
pose a substantial challenge. Discovered resources are un-
known and thus untrusted. Discovered software modules
may be equally untested and their advertised features may
be faulty. Discovered computer systems may be accessed by
many users, leaving their availability and use questionable.
Discovered applications may run well on one platform, but
inefficiently on others.

We address this challenge with a new Advanced Adap-
tive Tuning System, ATUNE, that works in concert with
existing publication, discovery, and use mechanisms. This
environment adaptively tunes available parameters in dis-
covered resources, gradually achieving the best possible
working point. Thus, when developing software, discov-
ered modules combine in a way that achieves the program-
mer’s goal most efficiently; applications adaptively find the
best among the discovered execution platforms, and they re-
compile and tune dynamically to this platform; as the load
on the network changes or new network resources become
available, programs adaptively choose a new best working



62.22
50.99

105.76

69.23
63.14

89.28

50.59

87.32

36.96

102.97

68.28

2.33 7.06 11.21
4.03 1.79 2.33 3.38 4.22 2.59 1.61 3.36

0.00

20.00

40.00

60.00

80.00

100.00

120.00

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

m
es
a

m
gr
id

si
xt
ra
ck

sw
im

w
up
w
is
e

G
eo
M
ea
n

N
or

m
al

iz
ed

 tu
n
in

g 
tim

e

Whole PEAK

 

Figure 1. Reduction of Tuning Time Through Offline, Subroutine-Level Tuning. By measuring and tuning individual subrou-
tines, rather than the whole program, our offline tuning engine exploits the fact that subroutines are invoked many times in the course
of a program. Hence, a large number of tuning actions can be performed in one program execution, leading to a 20-fold decrease in
tuning time, on average, compared to whole-program tuning of the SPEC FP2000 programs. (Normalized tuning time indicates the
number of times the program needs to be run for tuning to complete.)

point.
Our work builds on prior results that have created dy-

namically adaptive program optimizations [8, 7, 6, 13] and
an Internet sharing system that serves as both an integra-
tion framework and testbed for the new, combined tech-
niques [10, 11].

2 ATUNE Overview

Our ATUNE system consists of a tuning engine that
is integrated into a system for resource sharing. The
iShare Internet sharing system provides the overall environ-
ment [10, 11]. It includes facilities to publish, discover, and
use software and hardware resources.

The tuning engine builds on our prior work with dynamic
and adaptive compilation [8, 13]. This work was the first to
create a fully functional, integrated system for adaptively
recompiling and tuning an application during its execution,
using standard compilers [13]. It also showed that it can
navigate a large optimization parameter search space more
efficiently and effectively than others [12, 9].

The specific goal behind the described work is to enable
roaming applications. In a simple case of publishing an ap-
plication for use by others, the owner may specify a single
platform that is capable of executing the application. By
contrast, roaming applications are those that are able to run
on a range of platforms. To this end, the execution sys-
tem must be able to automatically install a newly discovered
application on a newly discovered computer platform. For
efficient operation, the installation is followed by a tuning

process that aims at executing the applications in an optimal
way.

We describe two contributions towards such a tuning
process. They include (i) an offline tuning system that finds
the best compilation options for a given application and
platform and (ii) a dynamically adaptive system that tunes
irregular parallel applications as they run on a compute clus-
ter.

3 Offline Tuning of Compilation Options

In an initial project, we have implemented a tuning en-
gine that optimizes programs in an offline manner, similar to
profile-driven optimization. A key component of the tuning
system is its algorithm that performs an empirical search
on a large space of program transformation techniques. At
each point in the search, the engine decides on the better
combination of techniques by compiling the code, dynam-
ically inserting it into the running application, and com-
paring execution times. Other important components of
this mechanism are the timing comparison methods and the
method for best selection of subroutines for efficient tuning.
Details of these techniques are described in [8, 7, 6].

Figure 1 shows the tuning time for finding the best com-
bination of the 38 GCC compiler options that are part of the
highest optimization level. The two bars compare the tun-
ing method that measures overall program timing with the
one that tunes individual subroutines. There is a 20-fold re-
duction in optimization time, owing to the fact that tuning
actions are performed at every subroutine invocation, rather



0

10

20

30

40

50

60

70

am
m
p

ap
pl
u

ap
si ar
t

eq
ua
ke

m
es
a

m
gr
id

si
xtr
ac
k

sw
im

wu
pw
is
e

G
eo
M
ea
n

Re
la

tiv
e 

pe
rfo

rm
an

ce
 im

pr
ov

em
en

t p
er

ce
nt

ag
e 

(%
) Whole_Train PEAK_Train Whole_Ref PEAK_Ref

 

Figure 2. Performance Improvement Through Offline Tuning. The bars show tuning at the whole-program level and the
subroutine level; “train” and “ref” indicate the program performance of these respective benchmark data sets. (“train” is always
used during the tuning process). The data sets and whole vs. subroutine tuning result in similar performance. The geometric mean
over the SPEC FP2000 benchmarks shows 12% improvement over the highest GCC optimization level (-O3).

than once per program run.
Figure 2 shows the performance improvements of our

offline tuning system. On average, the program perfor-
mance improves by 12% over the highest optimization level
-O3. For individual programs, we have found up to 60%
improvement. We have found that several of these im-
provements are due to subtle interactions of optimization
techniques, and thus they are not commonly discovered by
users experimenting with reasonable combinations of com-
piler options. The improvements are also not predictable by
common performance models. In these cases, our empirical
search mechanism appears to be superior to other optimiza-
tion methods.

4 Dynamically Adaptive Tuning of Irregular
Cluster Applications

This section presents an adaptive runtime tuning system
for distributed parallel irregular applications. For irregular
applications, such as sparse matrix-vector (SpMV) multi-
plication kernels, static performance optimizations are diffi-
cult because memory access patterns may be known only at
runtime. Extensive studies have been conducted to improve
irregular applications on single-processor or shared mem-
ory systems [14]. There has been a focus on architecture-
oriented techniques, such as register blocking and cache
blocking. While these techniques may be applied on dis-
tributed systems to tune individual nodes, they do not pro-
pose parallel distributed optimizations.

On distributed parallel applications, load balancing and
communication cost reduction are two key issues. To ad-

dress these issues, many graph-partitioning-based decom-
position algorithms [2, 1] and decomposition heuristics
[5, 15] have been proposed. They generally aim at dis-
tributing computations as evenly as possible or minimiz-
ing communication volume through preprocessing steps or
static runtime allocations. However, these static methods do
not capture dynamic runtime factors, such as compute speed
differences among the assigned nodes and interconnection
characteristics, which affect the performance of these paral-
lel applications.

In this project, we have implemented a runtime tun-
ing mechanism that can be applied dynamically to adapt
distributed parallel irregular applications to the underlay-
ing environments. No preprocessing steps are necessary.
The proposed tuning system consists of two techniques:
iteration-to-process mapping based on normalized iteration
execution time and runtime selection of communication al-
gorithms. The first technique achieves computational load
balance by mapping iterations to processes dynamically,
based on the measured execution time; the second tech-
nique finds the best possible communication method for
message patterns generated by our adaptive mapping mech-
anism. In contrast to previous static runtime allocation ap-
proaches [5, 15], the proposed tuning system re-distributes
the workload dynamically. In this way, our tuning system
attains improved load balance.

A key component of the runtime tuning system is its
algorithm that reduces incurred measuring and communi-
cation overheads. The tuning system approximates each
iteration execution time using a normalization technique.
To increase accuracy, the normalized execution time is
recalculated whenever the iteration-to-process mapping is



Total speedups on 16 nodes

0
1
2
3
4
5
6
7
8

af
_s
he
ll1

0

bo
ne
S1

0

raj
at3

1

Si
41
Ge

41
H7

2
Si
O2

g7
jac

20
0s
c

ld
oo
r

ap
pu

AS
IC

_6
80
ks

AS
IC
_6

80
k

cr
an
ks
eg
_2 F1 F2

ho
od

nd
6k

nd
24
k

ns
3D

a

po
iss

on
3D

b

sm
e3
D
b

sm
e3
D
c

sp
ar
sin

e

au
di
kw

_1

da
rc
y0
03

in
lin

e_
1

kk
t_
po

w
er

m
sd
oo

r

Input matrices

S
p

e
e
d

u
p

Org.
CTuned
Tuned

 
Figure 3. Performance Improvement Through Adaptive Runtime Tuning. The bars show the speedups of the base parallel
version (Org), computation-tuning only version (CTuned), and tuned version (Tuned) on 16 nodes. Experiments on 26 real sparse
matrices show that our adaptive mapping (CTuned) reduces execution times up to 37.8% (14% on average) and the overall tuning
system(Tuned) reduces execution times up to 66.7% (33.3% on average) on 16 nodes.

Table 1. Execution time reduction by the proposed tuning system. In A(B) format, A represents the average of 26 matrices and
B is the maximum value.

4 nodes 8 nodes 16 nodes 32 nodes overall

Main time reduction (CTuned) (%) 17.2 (40.4) 22.1 (55.2) 20.7 (51.7) 16.3 (45) 19.1 (55.2)
Main time reduction (Tuned) (%) 27.8 (44.1) 38.8 (62.1) 46.1 (75.9) 53.2 (79.3) 41.5 (79.3)

Total time reduction (CTuned) (%) 14.9 (34.2) 16.9 (44.7) 14 (37.8) 9.6 (32) 13.8 (44.7)
Total time reduction (Tuned)(%) 23.9 (39.6) 30.6 (55.6) 33.3 (66.7) 36 (68.8) 30.9 (68.8)

Static allocation vs. CTuned

0
1
2
3
4
5
6

af
_s
he
ll1

0

bo
ne
S1

0

ra
jat
31

Si
41
Ge

41
H7

2
Si
O2

g7
jac

20
0s
c

ld
oo
r

ap
pu

AS
IC
_6
80
ks

AS
IC
_6
80
k

cr
an
ks
eg
_2 F1 F2

ho
od

nd
6k

nd
24
k

ns
3D

a

po
iss

on
3D

b

sm
e3
D
b

sm
e3
D
c

sp
ar
sin

e

au
di
kw

_1

da
rc
y0
03

in
lin

e_
1

kk
t_
po
w
er

m
sd
oo
r

Input matrices

S
p

e
e
d

u
p

SA on 4
CTuned on 4
SA on 16
CTuned on 16

 

Figure 4. Performance Comparison of Static Allocation Method (SA) vs. Adaptive Iteration-to-process Mapping Method
(CTuned) on 4 and 16 Nodes. This figure reveals that our adaptive mapping algorithm (CTuned) performs equally or better than the
static allocation method (SA) in most cases.

changed, and the newly estimated value is used for the next
re-mapping. For the runtime selection of communication
methods, the runtime system inspects communication pat-

terns generated by the mapping system and tries several
communication algorithms to find the best method. More
details of these techniques can be found in [4].



Figure 3 shows the performance improvements of our
adaptive runtime tuning system. We applied our techniques
to distributed parallel sparse matrix-vector (SpMV) multi-
plication kernels. Experiments were conducted on 26 real
sparse matrices in the UF Sparse Matrix Collection [3],
which cover a wide range of application areas, such as finite
element methods, circuit simulation, and linear program-
ming. These matrices have various non-zero data distribu-
tions from banded diagonals to random distributions, and
their dimension sizes vary from 14K to 4.7M. The proposed
tuning system reduces execution time up to 68.8% (30.9%
on average) over base parallel SpMV kernels. Table 1 sum-
marizes the execution time reductions measured for the 26
matrices. In the table, main time refers to the time to execute
the main SpMV computation body, excluding the initial in-
put data distribution phase.

Figure 4 compares our adaptive iteration-to-process
mapping system with a static allocation method, which
maps iterations to processes statically, such that non-zero
elements in sparse matrices are distributed evenly. Fig-
ure 4 shows the speedups of both our mapping algorithm
(CTuned) and the static allocation algorithm (SA) on 4 and
16 nodes. The figure demonstrates that our adaptive map-
ping system performs equally or better than the static allo-
cation method, in most cases. In particular, for darcy003
and kkt power, the static method achieves little speedup on
both 4 and 16 nodes, while our adaptive mapping performs
significantly better.

5 Conclusion

We have presented results of two components of a larger
adaptive tuning system that is able to optimize globally dis-
covered resources to local needs. The first components is
an offline tuning system that compiles programs automati-
cally to a target platform, finding the best combination of
optimization techniques. The second component is a tuning
capability for optimizing irregular algorithms that operate
on sparse matrices. These components tune programs on
compute platforms, which makes them suitable for match-
ing discovered software and hardware resources. The over-
all tuning system will include several additional compo-
nents, such as composition functionality (enabling discov-
ered software and hardware resources to combine in new
ways), data integrators (allowing diverse data volumes to
be discovered and form integrated databases), and history-
based optimization methods (enabling resources to evolve
with time).

References

[1] E. G. Boman and U. Catalyurek. Constrained fine-grain par-
allel sparse matrix distribution. SIAM Workshop on Combi-

natorial Scientific Computing, 2007.
[2] U. V. Catalyurek and C. Aykanat. Hypergraph-partitioning-

based decomposition for parallel sparse-matrix vector multi-
plication. IEEE Trans. on Parallel and Distributed systems,
10, July 1999.

[3] T. Davis. University of florida sparse matrix collection [on-
line]. available: http://www.cise.ufl.edu/research/sparse /ma-
trices/.

[4] S. Lee and R. Eigenmann. Adaptive runtime tuning of par-
allel sparse matrix-vector multiplication on distributed mem-
ory systems. Technical Report ECE-HPCLab-08201, Purdue
University, School of Electrical and Computer Engineering,
High-Performance Computing Laboratory, 2008.

[5] S. G. Nastea and O. Frieder. Load-balancing in sparse
matrix-vector multiplication. Proceedings of 8th IEEE Sym-
posium on Parallel and Distributed Processing, page 218,
1996.

[6] Z. Pan and R. Eigenmann. Rating compiler optimizations
for automatic performance tuning. In SC2004: High Per-
formance Computing, Networking and Storage Conference,
page (10 pages), Nov. 2004.

[7] Z. Pan and R. Eigenmann. Fast and effective orchestration of
compiler optimizations for automatic performance tuning. In
The 4th Annual International Symposium on Code Genera-
tion and Optimization (CGO), page (12 pages), March 2006.

[8] Z. Pan and R. Eigenmann. Fast, automatic, procedure-level
performance tuning. In Proc. of Parallel architectures and
Compilation Techniques, pages 173–181, 2006.

[9] R. P. J. Pinkers, P. M. W. Knijnenburg, M. Haneda, and
H. A. G. Wijshoff. Statistical selection of compiler op-
tions. In The IEEE Computer Society’s 12th Annual In-
ternational Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunications Systems (MAS-
COTS’04), pages 494–501, Volendam, The Netherlands, Oc-
tober 2004.

[10] X. Ren and R. Eigenmann. iShare - open internet sharing
built on peer-to-peer and web. In European Grid Conference,
pages 1117–1127, Feb. 2005.

[11] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi. Prediction
of resource availability in fine-grained cycle sharing sys-
tems and empirical evaluation. Journal of Grid Computing,
5:173–195, 2007.

[12] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I.
August. Compiler optimization-space exploration. In Pro-
ceedings of the international symposium on Code generation
and optimization, pages 204–215, 2003.

[13] M. Voss and R. Eigenmann. High-Level Adaptive Program
Optimization with ADAPT. In Proc. of PPoPP’01: Prin-
ciples and Practice of Parallel Programming, Snow Bird,
Utah, June 2001.

[14] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel. Optimization of sparse matrix-vector multipli-
cation on emerging multicore platforms. Proceedings of Su-
percomputing (SC), 2007.

[15] L. H. Ziantz, C. C. Ozturan, and B. K. Szymanski. Run-time
optimization of sparse matrix-vector multiplication on SIMD
machines. Int. Conf. Parallel Architecture and Languages,
817:313–322, July 1994.


