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ABSTRACT
Sparse matrix-vector (SpMV) multiplication is a widely used
kernel in scientific applications. In these applications, the
SpMV multiplication is usually deeply nested within multi-
ple loops and thus executed a large number of times. We
have observed that there can be significant performance vari-
ability, due to irregular memory access patterns. Static per-
formance optimizations are difficult because the patterns
may be known only at runtime. In this paper, we pro-
pose adaptive runtime tuning mechanisms to improve the
parallel performance on distributed memory systems. Our
adaptive iteration-to-process mapping mechanism balances
computational load at runtime with negligible overhead (1%
on average), and our runtime communication selection algo-
rithm searches for the best communication method for a
given data distribution and mapping. Actual runs on 26
real matrices show that our runtime tuning system reduces
execution time up to 68.8% (30.9% on average) over a base
block-distributed parallel algorithm on distributed systems
with 32 nodes.

Categories and Subject Descriptors
J.2 [Physical Science and Engineering]: Physics; D.2.8
[Software Engineering]: Metrics—performance measures

General Terms
Performance

Keywords
runtime tuning, sparse matrix, process mapping

1. INTRODUCTION
The importance of sparse matrix-vector (SpMV) multi-

plication as a computational kernel has led to a large num-
ber of research contributions to optimize its performance.
Many contributions have improved SpMV multiplications on
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single-processor or shared memory systems [10, 21]. There
has been a focus on architecture-oriented techniques, such as
register blocking, cache blocking, and TLB blocking. While
these techniques may be applied on distributed systems to
tune individual nodes, they do not propose parallel dis-
tributed optimizations.

On distributed parallel SpMV multiplication, load balanc-
ing and communication cost reduction are two key issues.
To address these issues, many graph-partitioning-based de-
composition algorithms [3, 5, 4, 14] have been proposed.
Due to the complexity of these algorithms, they are gener-
ally applied as preprocessing steps, rather than as runtime
optimizations. For runtime tuning, several decomposition
heuristics have been suggested [12, 22, 13, 2, 16]. They
generally aim at distributing non-zero elements as evenly
as possible. However, these static allocation methods do
not capture dynamic runtime factors affecting the perfor-
mance. One approach proposed a framework for dynamic
optimization of parallel SpMV operations, on top of which
load-balancing techniques can be added [11]. The approach
aims at only high-level parallelism, however.

In this paper, we propose runtime tuning mechanisms
that can be applied dynamically to adapt distributed paral-
lel SpMV multiplication kernels to the underlying environ-
ments. No preprocessing steps are necessary. Our adaptive
iteration-to-process mapping system achieves load balance
by re-assigning rows to processes, according to the measured
execution-time workload of each process. In this way, our
tuning system achieves better load balance than previous
static allocation systems. Our adaptive system also selects,
at runtime, from among several communication methods.
We evaluated the proposed tuning system on 26 real sparse
matrices from a wide variety of scientific and engineering
applications. The experimental results show that our tun-
ing system reduces execution time up to 68.8% (30.9% on
average) over a base block-distributed parallel algorithm on
a 32-node platform.

This paper is organized as follows: Section 2 provides an
overview of basic sequential and distributed parallel SpMV
multiplication algorithms, and discusses previous approaches
on parallel SpMV optimizations. Section 3 presents our run-
time tuning system, which consists of an adaptive iteration-
to-process mapping mechanism and a runtime communica-
tion selection system. Implementation methodology and ex-
perimental results on 26 sparse matrices are shown in Sec-
tion 4 and Section 5, respectively. Section 6 presents con-
clusions.
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Figure 1: Sequential algorithm for sparse matrix-
vector multiplication, where N is the number of rows
in matrix A

2. PARALLEL SPMV MULTIPLICATION
ON DISTRIBUTED MEMORY SYSTEMS

There are several sparse storage formats, which favor dif-
ferent parallelization strategies [17]. In this work, com-
pressed row storage (CRS), which is the most widely used
sparse-data format in scientific computing applications, is
used to store a sparse matrix for SpMV computations. In
CRS, rows are stored in consecutive order. A dense array,
val, is used to store non-zero matrix elements in a row-wise
fashion, and two other dense arrays are used to keep the
positional information of each non-zero element: ind, which
contains the column indices of each stored element, and row-
ptr, which contains pointers to the first non-zero element of
each row in the array val. A sequential algorithm for sparse
matrix-vector multiplication (y=Ax) is shown in Fig. 1.

For a base distributed parallel implementation, we fol-
lowed the guidelines in [17]: one-dimensional data distri-
bution and broadcast messages for all data communication.
One-dimensional data distribution reduces the complexity of
the load-balancing problem on heterogeneous clusters [9].
There are several algorithms for 2-D data partitioning [13,
16, 20]. However, due to their complexity, they are more
suitable for single or shared memory systems than for dis-
tributed memory systems [12]. The use of broadcast mes-
sages for data communication is a natural choice, and it may
perform optimally for common cluster interconnections such
as Ethernet [17]. As we will see later in this paper, however,
different communication methods may be preferred depend-
ing on irregular parallel SpMV communication patterns.

In a parallel SpMV implementation for CRS format, the
sparse matrix is block-distributed in a row-wise fashion, and
the output vector y can also be block-distributed. On the
other hand, the input vector x should be replicated to all
processes because each process may need the entire input
vector x for SpMV multiplication. At each outermost-loop
iteration, each process computes its local matrix-vector mul-
tiplication part and broadcasts its newly updated input vec-
tor to all processes. The parallel algorithm and correspond-
ing data distribution appear in Fig. 2.

In Fig. 2 (a), s index and e index determine the row blocks
that each process will compute. For example, the process P0
in Fig. 2 (b) calculates the matrix-vector product of the dot-
ted region and generates new values y(1:2). Before starting
the next calculation, each process updates remotely com-
puted values of x through MPI Allgatherv() all-to-all com-
munication.

In distributed parallel SpMV algorithms, irregular mem-
ory access patterns cause significant load imbalance in terms
of both computation and communication. Resolving this is-
sue at compile time is difficult because the data access pat-
terns of the involved computation and communication may
be known only at runtime. There exist extensive graph-
partitioning-based decomposition algorithms [3, 5, 4, 14]
pursuing either minimum communication cost or computa-
tional load balancing. But due to their complexity or in-
curred large overhead, none of them are applicable as run-
time techniques. Instead, these techniques are applied to
sparse matrices as preprocessing steps. However, this means
that users must preprocess every input sparse matrix before
running SpMV kernels. Other research has proposed de-
composition heuristics [12, 22, 13, 2]; although less complex,
they still incur non-negligible overhead. They are engaged
as either preprocessing or static runtime allocation methods.
Moreover, none of the aforementioned techniques consider
dynamic runtime factors such as computing power difference
among the assigned nodes, the interconnection characteris-
tics of deployed clusters, and interference from co-existing
jobs.

3. ADAPTIVE RUNTIME TUNING SYSTEM
This section presents an adaptive runtime tuning system

for distributed parallel SpMV multiplication kernels. The
proposed tuning system consists of two steps: normalized
row-execution-time-based iteration-to-process mapping and
runtime selection of communication algorithms. The first
step achieves computational load balance by mapping rows
to processes dynamically, based on measured execution time;
the second step finds the best possible communication method
for message patterns generated by the first step. In contrast
to previous approaches, which statically assign workload to
each process according to non-zero element distributions,
the proposed tuning system re-distributes the workload dy-
namically. In this way, our tuning system attains improved
load balance. The proposed system assumes compressed row
storage (CRS) format, but it can be applied to other storage
formats, too. Detailed descriptions of the tuning system are
presented in the following two subsections.

3.1 Normalized row-execution-time-based
iteration-to-process mapping algorithm

In distributed parallel SpMV multiplication, general de-
composition algorithms [12, 22, 13, 2] solve load-balancing
problems by partitioning non-zero elements evenly among
participating processes. In a one-dimensional data distribu-
tion case, the decomposition algorithms map rows to pro-
cesses such that the numbers of non-zero elements assigned
to each process are as even as possible. However, these map-
ping mechanisms do not consider other factors, such as loop
overheads. For example, suppose that two processes are as-
signed the same number of non-zero elements to compute. If
this assignment results in 10 out of 1000 rows being mapped
to one process and the remaining 990 rows to the other pro-
cess, the two processes will incur different loop overheads,
even though the amount of SpMV calculations is identical.
Another problem of the existing decomposition algorithms
is that they do not consider dynamic runtime-system per-
formance. In batch-oriented large clusters, the computing
nodes may consist of heterogeneous machines with different
clock speeds or physical memory sizes. Moreover, if each
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Figure 2: Parallel algorithm and data distribution for sparse matrix-vector multiplication

node has multiple cores, depending on job configurations,
some jobs may run on the same node, sharing its physical
memory. The existing algorithms do not cover these dy-
namic factors affecting runtime performance.

To address these issues, we propose a dynamic runtime
mapping mechanism called normalized row-execution-time-
based iteration-to-process mapping. In the proposed al-
gorithm, row-to-process mapping is performed at runtime,
based on the execution time of each row. The optimization
goal of our mapping algorithm is to find the best row-to-
process mapping, such that measured SpMV computation
times are as even as possible among processes. The basic
approach to achieve this goal is as follows: initially rows
are block-distributed evenly among processes and each pro-
cess measures the execution time of each assigned row. The
row-execution times are exchanged among processes in an
all-to-all manner. The rows are block-distributed again, but
inter-process boundaries are adjusted, such that each pro-
cess has similar row-block-execution time, which is the sum
of execution times of rows mapped to the same process. Due
to the runtime performance difference, the execution times
of the same row may differ on different processes. There-
fore, the execution time of each row is measured again. This
measure-and-map procedure is repeated until the difference
of row-block-execution times are within some threshold (5%
in our experiments).

Measuring and exchanging each row execution time may
incur large measuring and communication overhead. To
minimize the incurred overheads, we approximate each row
execution time. At every outermost-loop iteration, which
corresponds to one computation of SpMV multiplication,
every process measures net computation time consumed to
calculate row blocks assigned to the process. Normalized
row execution time (NRET) is the measured time divided
by the number of assigned rows.

NRET =
exe. time for assigned rows computation

the number of assigned rows

In this approximation, each row assigned to one process
has identical execution time regardless of the number of non-
zeros contained in the row. To increase accuracy, the row
execution time is recalculated whenever the row-to-process
mapping is changed, and the newly estimated value is used
for the next re-mapping. These repeated feedback steps have
a grouping effect, so that the algorithm converges. In theory,

convergence is not guaranteed, which can occur if there exist
a few highly dense rows in small matrices.

To guarantee termination, our algorithm forces tuning
to stop after a number of steps (20 in our experiments)
and remain off for a shelter period. After that period (100
outermost-loop iterations in our experiments) the runtime
environment is checked for changes; if unchanged, the al-
gorithm repeats the shelter period. This process continues
through the end of the program.

The overall procedure and a simple example are presented
in Fig. 3. During the mapping phase, all calculations are
redundantly executed by all processes to minimize the in-
volved communication. As shown in the example, some
row blocks should be migrated to a new process when the
mapping is changed. However, the communication cost to
migrate large row blocks may be high. To reduce the mi-
gration cost, our tuning system replicates the entire sparse
matrix data rather than block-distributing the data among
processes. This replication removes data migration complex-
ity and the involved communication cost at the expense of
increased memory pressure. Selecting between data replica-
tion and migration may be a further tuning target.

3.2 Runtime selection of communication
algorithms

On distributed memory systems, data communication is
performed by explicit message passing. In this work, we use
MPI [1] for data communication. MPI provides rich com-
munication methods, offering variants and parameters that
may be tuned for specific communication patterns. Choos-
ing the right methods is important for high performance
applications. An extensive study [15] on real MPI appli-
cations, performed on a Cray T3E, reveals that the most
important performance bottleneck of MPI communication
lies in the synchronization delay, which is the difference be-
tween the total time spent in the MPI communication call
and the underlying data-transfer time. This synchroniza-
tion delay depends on both computational and communica-
tional load balances. Many existing approaches [7, 19, 8]
only focus on individual collective-communication-call tun-
ing, ignoring the synchronization delay caused by computa-
tional load imbalance. By contrast, our iteration-to-process
mapping system addresses this delay. Given that the com-
putational load-balancing problem is solved and there ex-
ist many solutions for individual-communication-call tuning,
our communication tuning system focuses on more high-level
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Figure 3: Normalized row-execution-time-based iteration-to-process mapping algorithm and an example

algorithmic approaches. In distributed parallel SpMV mul-
tiplication, each process updates remotely computed data at
every outermost-loop iteration. This data exchange involves
many-to-many communication. There are several options
for this communication, as shown below.

Block broadcasting method (CM1): each process broad-
casts locally written output blocks.

Block point-to-point exchange method (CM2): processes
exchange bounding blocks containing needed elements through
point-to-point communication.

Packed point-to-point exchange method (CM3): processes
exchange exactly needed elements through point-to-point
communication. This method involves explicit/implicit pack-
ing and unpacking.

The three methods perform differently depending on com-
munication patterns. CM1 may work well when large num-
bers of non-zero elements are distributed over an entire ma-
trix. The rationale behind this method is that existing col-
lective communications may be customized to all-to-all com-
munication patterns with large data size. In contrast to
CM1, CM2 and CM3 reduce the communication volume by
calculating needed data for each process. CM3 minimizes
communication volume at the cost of additional computa-
tion and memory overheads for data packing and unpacking.
Compared to CM3, CM2 may include unnecessary elements
in the bounding blocks. This does not affect correctness be-
cause these unnecessary elements are also the ones written
by the sending process. In the proposed tuning system, the
best communication method is selected at runtime, based on

measured execution time. Since the performance of these
methods is heavily dependent on a data distribution, the
fastest method is re-selected whenever the adaptive map-
ping system changes the distribution. Measuring a global
time is not simple in parallel executions because nodes have
local timers, which are not synchronized. In the proposed
tuning system, however, this problem is minimized by the
balanced workload. Our selection mechanism simply uses
the average measured communication time.

The idea of selecting the best variant among several high-
level communication algorithms came from [18], where the
best method is chosen at runtime, based on a performance
model. One drawback of the previous approach is that the
performance model is a simple latency-based point-to-point
model, which does not capture complex communication be-
haviors. By contrast, our simple selection mechanism re-
flects dynamic runtime performance. Moreover, our system
does not depend on prerequisites, such as measuring laten-
cies between nodes to calculate model parameters [18].

4. METHODOLOGY
4.1 Implementation

For our experiments, we hand-coded an MPI-version of sp-
mul, a common sequential SpMV multiplication kernel. We
combined this base version of the distributed SpMV multi-
plication kernel with the described tuning system. As com-
munication methods, we used MPI Allgatherv() for CM1
and non-blocking receive (MPI Irecv()) combined with stan-
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Table 1: Summary of sparse matrices used in evaluation
Name Dim (NxN) Non-zeros Type Description

af shell10 1,508,065 27,090,195 diagonal sheet metal forming
boneS10 914,898 28,191,660 diagonal 3D trabecular bone
rajat31 4,690,002 20,316,253 diagonal circuit simulation matrix

Si41Ge41H72 185,639 7,598,452 diagonal Real-space pseudo-potential method
SiO2 155,331 5,719,417 diagonal Real-space pseudo-potential method

g7jac200sc 59,310 837,936 diagonal Jacobian from CEPII
ldoor 952,203 23,737,339 even INDEED test matrix
appu 14,000 1,853,104 even fluid dynamics

ASIC 680ks 682,712 2,329,176 even Xyce circuit simulation matrix
ASIC 680k 682,862 3,871,773 uneven Xyce circuit simulation matrix
crankseg 2 63,838 7,106,348 uneven OUTPUT4-Matrix

F1 343,791 13,590,452 uneven Symmetric indefinite matrix
F2 71,505 2,682,895 uneven AUDI engine piston rod

hood 220,542 5,494,489 uneven INDEED Test Matrix (DC-mh)
nd6k 18,000 3,457,658 uneven ND problem set
nd24k 72,000 14,393,817 uneven ND problem set
ns3Da 20,414 1,679,599 uneven 3D Navier Stokes

poisson3Db 85,623 2,374,949 uneven 3D Poisson problem
sme3Db 29,067 2,081,063 uneven 3D structural mechanics problem
sme3Dc 42,930 3,148,656 uneven 3D structural mechanics problem
sparsine 50,000 799,494 uneven structural optimization (CUTEr)
audikw 1 943,695 39,297,771 uneven symmetric rb matrix
darcy003 389,874 1,167,685 uneven discretization using mixed FE
inline 1 503,712 18,660,027 uneven stiffness matrix

kkt power 2,063,494 8,130,343 uneven Optimal power flow
msdoor 415,863 10,328,399 uneven medium size door

dard send (MPI Send()) for CM2 and CM3. For data pack-
ing in CM3, we used MPI Type indexed(), which provides
implicit data packing and unpacking by the underlying MPI
implementation.

4.2 Parallel platforms
We used the Intel compiler 9.0 with option -O2 and MPICH2

1.2.7. We carried out the experiments on the Hamlet linux
cluster at Purdue University. Hamlet consists of 308 IA-32
P4 nodes with two different processor speeds (3.06 GHz and
3.2 GHz) and two different physical memory sizes (2 GB and
4GB). We used 32 nodes connected with InfiniBand.

4.3 Evaluated sparse matrices
To evaluate the performance of our tuning system on the

parallel SpMV multiplication kernel, we conducted experi-
ments on 26 real sparse matrices in the UF Sparse Matrix
Collection [6]. The matrices cover a wide range of appli-
cation areas, such as finite element method, circuit simula-
tion, and linear programming. A summary of the matrices
appears in Table 1. Most of the matrices in the table are
symmetric. For some of these cases, only one half of the
matrix is stored, and we performed our experiments only on
the stored information. While the overall execution time for
these cases would be twice the numbers we obtained, the
load-balancing results would be the same. The same algo-
rithm would essentially be performed twice – once on the
upper half and once on the lower half of the input matrix.

5. EXPERIMENTAL RESULTS
This section presents the performance of the tuned par-

allel SpMV multiplication kernel on real matrices listed in
Table 1. We compared our tuned version with the base par-
allel SpMV multiplication kernel described in Section 2. In
the base implementation, rows were block-distributed evenly

among processes. To separate the contributions of adaptive
mapping and communication method selection, we also ran
variants with only one of these techniques turned on. We im-
plemented a static allocation method and compared it with
our iteration-to-process mapping system. The overhead in-
curred by the tuning system was analyzed and the upper
limit of the overhead was measured. Each kernel executed
SpMV multiplication 1000 times and each test per input ma-
trix was repeated three times. For time measurements, we
used MPI Wtime(), a built-in MPI function.

5.1 Parallel performance
Performance impact of matrix structure: In SpMV

computations, the data structure of the input matrices has a
significant impact on the performance. In Table 1, matrices
are classified into three types: diagonal, even, and uneven.
In diagonal-type matrices, non-zero elements are allocated
along and around the diagonal. These matrices are usually
highly sparse and evenly distributed with respect to rows.

Fig. 4 shows an example of the diagonal-type matrices.
Fig. 4 (b) displays non-zero element distribution and one
outermost-loop iteration execution time (oite. comp. time),
which is the time to execute SpMV computation blocks as-
signed to each process. The graph contains results of the
original version (base parallel version) and the tuned ver-
sion run on 16 nodes. In this case, the original data distri-
bution is already fairly even. Nevertheless the effect of load
balancing is evidenced in the figure.

Fig. 4 (c) shows execution time breakups for original,
computation-tuning-only (CTuned), and tuned versions. The
left bar in each group, marked as 1, represents the original
version, followed by the CTuned and tuned versions. From
the graph, we can see that adaptive mapping does not im-
prove significantly, but communication tuning is very effec-
tive (averaged total execution time reduction = 36%). In
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Figure 4: Non-zero data distribution and parallel
performance of sparse matrix af shell

diagonal matrices such as af shell10, each process has to ex-
change data only with its neighbors. In this case, point-to-
point communications such as CM2 or CM3 are more suit-
able than heavy all-to-all communication (CM1). In real
experiments on 4, 8, 16, and 32 nodes, CM3 is selected for 8
out of 12 executions and CM2 was selected for the remaining
executions.

Fig. 5 represents the case for even-type matrices, whose
non-zero elements are not allocated diagonally but still dis-
tributed evenly with respect to rows. As shown in Fig. 5 (a),
the matrices of this type usually have non-zeros distributed
randomly over the entire matrix. As the af shell10 case did,
Fig. 5 (b) also shows that computational load balance can be
achieved with uneven non-zero distribution, even though the
performance benefits are negligible. In this case, both adap-
tive mapping and communication tuning are of little use.
Communication tuning is not useful because the data distri-
bution in this case requires all-to-all communication, where
CM1 may perform better than others, depending on the
sparsity and communication volume. In our experiments,
CM3 was selected more often than CM1, but the results in-
dicate that the performance of CM3 is no better than CM1,
in this case.

The matrix F1 in Fig. 6 is highly uneven. Consequently,
the data distribution is also uneven and its communication
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Figure 5: Non-zero data distribution and parallel
performance of sparse matrix appu

pattern is irregular. Fig. 6 (b) and (c) illustrate the power
of our adaptive mapping system. In the F1 input case, our
mapping system achieves load balance with 5.6 tuning calls
on average, and the incurred overhead is 0.45% on average.
With this small overhead, our tuning system reduces the to-
tal execution time by 37%. The main execution time (the
time to execute the main SpMV computation body exclud-
ing the initial input data distributing section,) is reduced by
49.6% on average. From Fig. 6 (c), we can see that computa-
tional load balancing reduces communication time. By bal-
ancing the workload among processes, the synchronization
delay, mentioned in Section 3.2, can be reduced. As shown
in Fig. 6 (a), F1 has non-zero elements randomly distributed
among the entire matrix. Therefore, communication tuning
is not effective. On the other hand, in the 32-node case
(rightmost group in Fig. 6 (c)), there is a noticeable time
reduction between the middle bar (CTuned version) and the
right bar (tuned version). This suggests that communica-
tion characteristics can be changed within the same input
matrix, depending on the number of involved processes. In
our experiments on the F1 input, CM1 or CM2 were se-
lected for the 4, 8, and 16 node cases, but the 32-node case
preferred CM3. CM3 minimizes the communication volume,
but it requires complex data packing and unpacking. If large
numbers of non-zero elements are located closely but not
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Figure 6: Non-zero data distribution and parallel
performance of sparse matrix F1

continuously, CM3 will perform worse than CM2, when its
packing overhead offsets the benefits from communication
volume reduction. This happened on 4, 8, and 16 nodes.
On 32 nodes, however, communication volume reduction by
CM3 outweighed the packing overhead. This case benefits
from tuning even within the same input data and the same
target architecture.

These three cases are representative of the performance
behavior of our tuning system.

Overall performance on 26 matrices: Speedups of all
26 matrices on 4 and 32 nodes are presented in Fig. 7. In the
figure, total speedups are the speedups in terms of total exe-
cution time and main comp. speedups show main execution
speedups. The graphs reveal several interesting behaviors.
First, in the 4-node cases, both adaptive mapping and com-
munication tuning work well, but on 32 nodes, communica-
tion tuning is more important than adaptive mapping. This
effect is caused by computational load balancing, which be-
comes less problematic as the number of involved processes
increases. When computation is distributed to a large num-
ber of processes, less work is assigned to each process on
average. Hence, the synchronization delay caused by load
imbalance tends to be smaller. Another reason is that the
benefit of using CM2 or CM3 becomes less on small numbers
of nodes; communication volume tends to be large and it is

more likely to be all-to-all communication. In such case,
CM1 may perform better than the others. In our experi-
ments, CM3 was chosen more often than CM1 even on 4
nodes, but the performance benefit of CM3 was much less
than on 32 nodes.

Second, there is a gap between total execution speedup
and main execution speedup and the gap increases as the
number of nodes increases. In the current parallel implemen-
tation, input data are read by process P0 and the data are
broadcast to all the other processes. The broadcast message
replicates input data to all involved processes, which adds
non-negligible overhead. If we block-distribute the input
data, the initial overhead may reduce, but the distribution
may cause several input data migrations during the adaptive
mapping phase. There is an opportunity to further develop
efficient algorithms for data migration. Table 2 summarizes
the execution time reductions measured for the 26 matrices.

5.2 Comparison of static allocation and
adaptive iteration-to-process mapping

This section compares our adaptive iteration-to-process
mapping system with a static allocation method, which maps
rows to processes statically, such that non-zero elements are
distributed evenly among processes. Fig. 8 contains the
speedups of both our mapping algorithm (CTuned) and the
static allocation algorithm (SA) on 4 and 16 nodes. The
figure reveals that our adaptive mapping system performs
equally or better than the static allocation method in most
cases. darcy003 and kkt power are quite interesting cases;
the static method gets hardly any speedups on both 4 and
16 nodes, while our adaptive mapping achieves reasonable
ones. darcy003 and kkt power have a large number of con-
secutive rows that do not contain any non-zero elements.
When the static method is applied, these rows are assigned
to one process. Fig. 2 (a) shows that the rows containing no
non-zero elements still have some computations, such as loop
checking and normalization. If a great number of such rows
are assigned to one process, as the static allocation does,
these small computations build up significant workloads,
causing severe load imbalance. By contrast, our adaptive
mapping system considers effective workloads experienced
by each process. Therefore, our mapping system causes no
such load imbalance problem. These results indicate that
non-zero-element-distribution-based load-balancing mecha-
nisms may not be optimal, depending on input matrix char-
acteristics.

5.3 Comparison of tuned and fixed
communication

In this section, we study the effect of runtime selection
of communication methods. For this study, we compared
our tuned version with fixed-communication-method ver-
sions (CM1, CM2, and CM3). Adaptive mapping is applied
to all versions to rule out the effect of load balancing. The
speedups on 4 nodes and 16 nodes are shown in Fig. 9. The
results indicate that CM3 works well in most cases, except
for ns3Da, poisson3Db, sme3Db, and sme3Dc, where CM1
works best. This phenomenon occurs because we deal with
sparse matrices. Table 1 shows that most of the matrices
used in the experiments are very large but highly sparse at
the same time. On these matrices, CM3 may generate much
smaller communication volume than CM1 or CM2, such that
the packing overhead can be overcome by reduced communi-

201



��������		
����������
	�

�

���

�

���

�

���

�

��
��
�	
���
�

��
�	
��
�

��
��
��
�

��
�
�
	
��
��

��
�
�

 �
��
!�
��
�!

�

��
�

��
��

"
�#
$
�%
&�
'�

"
�#
$
�%
&�
'

!�
��
'�
	 
�� (� (�

��
�


�

%'

�

�
'

��
�)
�

��
��
��
��
)
�

�*
	�
)
�

�*
	�
)
!

��
��
���
	

��

�
'+
��


�
�!
,�
��

��
���
	�
�

''
��
��
+
	�

*
�

��
�

#�����*����!	�

�
�
	
	

�
�

�� �

$���	


���	


-����!�*�����		
����������
	�

�

���

�

���

�

���

�

��
��
�	
���
�

��
�	
��
�

��
��
��
�

��
�
�
	
��
��

��
�
�

 �
��
!�
��
�!

�

��
�

��
��

"
�#
$
�%
&�
'�

"
�#
$
�%
&�
'

!�
��
'�
	 
�� (� (�

��
�


�

%'

�

�
'

��
�)
�

��
��
��
��
)
�

�*
	�
)
�

�*
	�
)
!

��
��
���
	

��

�
'+
��


�
�!
,�
��

��
���
	�
�

''
��
��
+
	�

*
�

��
�

#�����*����!	�

�
�
	
	


�
�

�� �

$���	


���	


��������		
������������
	�

�

�



%

&

��

��

��
��
�	
���
�

��
�	
��
�

��
��
��
�

��
�
�
	
��
��

��
�
�

 �
��
!�
��
�!

�

��
�

��
��

"
�#
$
�%
&�
'�

"
�#
$
�%
&�
'

!�
��
'�
	 
�� (� (�

��
�


�

%'

�

�
'

��
�)
�

��
��
��
��
)
�

�*
	�
)
�

�*
	�
)
!

��
��
���
	

��

�
'+
��


�
�!
,�
��

��
���
	�
�

''
��
��
+
	�

*
�

��
�

#�����*����!	�

�
�
	
	


�
�

�� �

$���	


���	


-����!�*�����		
������������
	�

�

�

��

��

��

��
��
�	
���
�

��
�	
��
�

��
��
��
�

��
�
�
	
��
��

��
�
�

 �
��
!�
��
�!

�

��
�

��
��

"
�#
$
�%
&�
'�

"
�#
$
�%
&�
'

!�
��
'�
	 
�� (� (�

��
�


�

%'

�

�
'

��
�)
�

��
��
��
��
)
�

�*
	�
)
�

�*
	�
)
!

��
��
���
	

��

�
'+
��


�
�!
,�
��

��
���
	�
�

''
��
��
+
	�

*
�

��
�

#�����*����!	�

�
�
	
	


�
�

�� �

$���	


���	


�

�

�

�

�

�

�

.�/�������	0	!��������*	���		
����������
	��

�

�

�

�

�

�

.�/�-����	0	!��������*	���		
����������
	��

�

�

�

�

�

�

.!/�������	0	!��������*	���		
������������
	��

�

�

�

�

�

�

.
/�-����	0	!��������*	���		
������������
	��

Figure 7: Speedups of all 26 matrices on 4 and 32 nodes

Table 2: Execution time reduction by the proposed tuning system: In A(B) format, A represents the average
of 26 matrices and B is the maximum value

4 nodes 8 nodes 16 nodes 32 nodes overall

Main time reduction (CTuned) (%) 17.2 (40.4) 22.1 (55.2) 20.7 (51.7) 16.3 (45) 19.1 (55.2)
Main time reduction (Tuned) (%) 27.8 (44.1) 38.8 (62.1) 46.1 (75.9) 53.2 (79.3) 41.5 (79.3)

Total time reduction (CTuned) (%) 14.9 (34.2) 16.9 (44.7) 14 (37.8) 9.6 (32) 13.8 (44.7)
Total time reduction (Tuned)(%) 23.9 (39.6) 30.6 (55.6) 33.3 (66.7) 36 (68.8) 30.9 (68.8)

cation size. By comparing graphs in Fig. 9 and Table 1, we
can find the trend that CM1 or CM2 is preferred to CM3, as
input matrices become denser. Fig. 9 shows that our tuning
system can capture the best communication method in all
cases.

5.4 Tuning overhead
Fig. 10 presents tuning overhead, which is represented by

the percentage of tuning time in the total execution time.
Fig. 10 (a) contains measured overheads on 4, 8, 16, and
32 nodes. From the graph, we can see that the overheads

increase as the number of nodes increases. The proposed
tuning system involves a small number of all-to-all commu-
nications for each process to collect timing information of the
others. Even though the required communication volume is
small, these collective calls become heavier, as the number
of nodes increases. Fig. 10 (b) compares incurred overhead
and upper limit, which is the case where the tuning system
is called continuously until the program finishes. The upper
limit tests were conducted on 4 and 16 nodes. On 4 nodes,
the upper limit is still small (0.72% on average), but on 16
nodes, it goes up to 12% on average. However, the actu-
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Figure 8: Performance comparison of static allocation method (SA) vs. adaptive iteration-to-process mapping
method (CTuned)
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Figure 9: Performance comparison of fixed communication modes vs. tuned mode
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Figure 10: Tuning overhead (percentage of tuning time in the total execution time)

ally incurred overhead remains small (0.3%, 0.6%, 1%, and
2.2% on 4, 8, 16, 32 nodes, respectively). This shows that
our tuning system is efficient and converges quickly in most
cases.

6. SUMMARY AND CONCLUSIONS
We have presented an adaptive runtime tuning system for

distributed parallel SpMV multiplication kernels. Our adap-
tive mapping system solves load-balancing problems by dy-
namically re-assigning matrix rows to processes, according
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to measured real-time workloads. To minimize the incurred
communication cost, our runtime selection system finds the
best communication method for the data distribution tuned
by our mapping mechanism. Experiments on 26 sparse ma-
trices from various scientific and engineering applications led
to several key findings. First, load-balancing mechanisms
based on non-zero element distribution may not be suitable.
Most previous work attempts to achieve load balance by
distributing non-zero elements among processes as evenly
as possible. However, our results show that load balancing
may be lowest with uneven data distribution, when consider-
ing the underlying runtime environment. Second, computa-
tional load balancing can play an important role in minimiz-
ing communication cost, as it can reduce synchronization de-
lay. Third, different data distributions favor different com-
munication methods, even though point-to-point communi-
cation methods work well in many cases. This is because
the sparsity of matrices is often very high. In these cases, it
is likely that either communication volume is small or all-to-
all communication is unnecessary. Fourth, initial input data
transfer times add non-negligible overhead to the parallel ex-
ecution time. To reduce this overhead, more studies on vari-
ous storage formats or data migration algorithms are needed.

Even though this paper focuses on sparse matrix-vector
multiplication tuning, our adaptive tuning system can be
applied to general irregular applications such as N-body
problems. The work presented in this paper generalizes a
compiler-driven adaptive tuning system, where a compiler
identifies irregular loops showing repetitive computation and
communication patterns and generates necessary inspector-
executor codes. Future work will include applying our tech-
niques to other irregular applications as well as applying
these techniques to a large range of sparse storage formats.
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